Exogenous Melatonin Mitigates Photoinhibition by Accelerating Non-photochemical Quenching in Tomato Seedlings Exposed to Moderate Light during Chilling
نویسندگان
چکیده
Melatonin plays an important role in tolerance to multiple stresses in plants. Recent studies have shown that melatonin relieves photoinhibition in plants under cold stress; however, the mechanisms are not fully understood. Non-photochemical quenching (NPQ) is a key process thermally dissipating excess light energy that plants employ as a protective mechanism to prevent the over reduction of photosystem II. Here, we report the effects of exogenous melatonin on NPQ and mitigation of photoinhibition in tomato seedlings exposed to moderate light during chilling. In response to moderate light during chilling, the maximum quantum yield (Fv/Fm) and the effective photochemical efficiency (F'v/F'm) of PSII were both substantially reduced, showing severe photoinhibition in tomato seedlings, whereas exogenous application of melatonin effectively alleviated the photoinhibition. Further experiment showed that melatonin accelerated the induction of NPQ in response to moderate light and maintained higher level of NPQ upon longer exposure to light during chilling. Consistent with the increased NPQ was the elevated de-epoxidation state of xanthophyll pigments in melatonin-pretreated seedlings exposed to light during chilling. Enzyme activity assay showed that violaxanthin de-epoxidase (VDE), which catalyzes the de-epoxidation reaction in the xanthophyll cycle, was activated by light and the activity was further enhanced by application of melatonin. Further analysis revealed that melatonin induced the expression of VDE gene in tomato seedlings under moderate light and chilling conditions. Ascorbic acid is an essential cofactor of VDE and the level of it was found to be increased in melatonin-pretreated seedlings. Feeding tomato seedlings with dithiothreitol, an inhibitor of VDE, blocked the effects of melatonin on the de-epoxidation state of xanthophyll pigments and the induction of NPQ. Collectively, these results suggest that exogenous melatonin mitigates photoinhibition by accelerating NPQ through the stimulation of VDE activity and the enhancement of de-epoxidation state of xanthophyll pigments.
منابع مشابه
Melatonin Increases the Chilling Tolerance of Chloroplast in Cucumber Seedlings by Regulating Photosynthetic Electron Flux and the Ascorbate-Glutathione Cycle
The aim of the study was to monitor the effects of exogenous melatonin on cucumber (Cucumis sativus L.) chloroplasts and explore the mechanisms through which it mitigates chilling stress. Under chilling stress, chloroplast structure was seriously damaged as a result of over-accumulation of reactive oxygen species (ROS), as evidenced by the high levels of superoxide anion (O2-) and hydrogen pero...
متن کاملEffect of exogenous Gama-aminobutyric acid on physiological tolerance of wheat seedlings exposed to chilling stress . Praviz Malekzadeh*, Jalil Khara and Reza Heidari
Accumulation of γ -aminobutyric acid (GABA) is associated with stress factors in plant systems. The objective of the current study was to compare GABA concentration in wheat plants under chilling stress. After 48 h treatments of seedlings under chilling stress combined stresses with and without GABA, morphological and biochemical assays were conducted. It was observed that the inhibition of see...
متن کاملThe chilling injury induced by high root temperature in the leaves of rice seedlings.
Root temperature is found to be a very important factor for leaves to alter the response and susceptibility to chilling stress. Severe visible damage was observed in the most active leaves of seedlings of a japonica rice (Oryza sativa cv. Akitakomachi), e.g. the third leaf at the third-leaf stage, after the treatment where only leaves but not roots were chilled (L/H). On the other hand, no visi...
متن کاملBeneficial Roles of Melatonin on Redox Regulation of Photosynthetic Electron Transport and Synthesis of D1 Protein in Tomato Seedlings under Salt Stress
Melatonin is important in the protection of plants suffering various forms of abiotic stress. The molecular mechanisms underlying the melatonin-mediated protection of their photosynthetic machinery are not completely resolved. This study investigates the effects of exogenous melatonin applications on salt-induced damage to the light reaction components of the photosynthetic machinery of tomato ...
متن کاملPhotosynthesis and High Light Stress
Exposure of plants to irradiances far above the light saturation point of photosynthesis, known as highlight stress, induces various responses including light adaptation of the photosynthetic apparatus and chloroplast ultrastructure by formation of sun-type chloroplasts. The latter possess a lower cross section for light absorption (less light-harvesting chlorophyll proteins) and higher rates o...
متن کامل